Kernel methods for heterogeneous feature selection

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Kernel methods for heterogeneous feature selection

This paper introduces two feature selection methods to deal with heterogeneous data that include continuous and categorical variables. We propose to plug a dedicated kernel that handles both kinds of variables into a Recursive Feature Elimination procedure using either a non-linear SVM or Multiple Kernel Learning. These methods are shown to offer state-of-the-art performances on a variety of hi...

متن کامل

Kernel methods for mixed feature selection

This paper introduces two feature selection methods to deal with heterogeneous data that include continuous and categorical variables. We propose to plug a dedicated kernel that handles both kind of variables into a Recursive Feature Elimination procedure using either a non-linear SVM or Multiple Kernel Learning. These methods are shown to offer significantly better predictive results than stat...

متن کامل

The Feature Selection Path in Kernel Methods

The problem of automatic feature selection/weighting in kernel methods is examined. We work on a formulation that optimizes both the weights of features and the parameters of the kernel model simultaneously, using L1 regularization for feature selection. Under quite general choices of kernels, we prove that there exists a unique regularization path for this problem, that runs from 0 to a statio...

متن کامل

Kernel Feature Selection

We address the problem of using a kernel spectral criterion function for feature selection. A feature selection paradigm using spectral properties of the affinity matrix of the input data was recently introduced in [11] and which leads to a bilinear interaction between entries of the data sample. Our goal in this paper is to extend the idea of spectral criteria for feature selection to higher o...

متن کامل

Kernel/feature Selection for Support Vector Machines

Support Vector Machines are classifiers with architectures determined by kernel functions. In these proceedings we propose a method for selecting the best SVM kernel for a given classification problem. Our method searches for the best kernel by remapping the data via a kernel variant of the classical Gram-Schmidt orthonormalization procedure then using Fisher’s linear discriminant on the remapp...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Neurocomputing

سال: 2015

ISSN: 0925-2312

DOI: 10.1016/j.neucom.2014.12.098